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One of the generic scenarios in molecular beam epitaxy is the growth of three-dimensional
structures such as mounds and pyramids. These structures are a nonequilibrium effect thought to
be due to a combination of the microscopic Ehrlich-Schwoebel barriers and the breaking of detailed
balance by the deposition process. We propose and investigate by computer simulation a simple
microscopic model that displays (i) slope selection, (ii) pyramid and moundlike structures, and (iii)
coarsening. The characteristic length scale of our three-dimensional features grows as R(t) ~ t™ with
n between 0.17 and 0.26. We discuss these results in the light of recent experiments and continuum

models of molecular beam epitaxy.

PACS number(s): 05.40.+j, 68.55.—a, 81.10.Aj, 05.70.Ln

I. INTRODUCTION

In the last few years, it has become clear that the tech-
nologically important molecular beam epitaxy (MBE)
growth process can give rise to a surprising variety of
different morphologies. Even in the simplest possible sit-
uation of homoepitaxial growth, one finds stable layer-by-
layer growth, kinetically rough films, and, perhaps most
surprisingly, unstable three-dimensional growth that can
result in mounds or pyramids. This three-dimensional
growth mode was first predicted by Villain [1] and later
seen in computer simulations of a simple solid-on-solid
(SOS) model [2]. Since then, three-dimensional growth
has been observed experimentally in such diverse systems
as GaAs/GaAs(001) [3,4], Cu/Cu(001) [5], Ge/Ge(001)
[6], Fe/Fe(001) [7], and Fe/MgO(001) [8]. Although
much experimental work remains to be done, the fol-
lowing features seem to be well established: (i) three-
dimensional growth is a nonequilibrium effect; in the ab-
sence of deposition, the surface returns to its stable ther-
modynamic state which may be flat or rough [4]; (ii) dur-
ing growth three-dimensional features coarsen; the char-
acteristic lateral dimension R seems to grow with a power
law R(t) ~ t™ with n somewhere in the range 0.16-0.26
[5,7,8]; (iii) the slope of mounds or pyramids remains
essentially constant after an initial transient [3,5,7,8];
this terminal slope is determined by material parameters
and growth conditions; (iv) only certain substrate orien-
tations support unstable growth; slightly miscut GaAs
grows in the step-flow mode [9] whereas GaAs(001), un-
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der the same conditions, produces mounds [3,10]; on
Cu(001) faceted pyramids with sides of orientation (115)
are formed [5] but growth of Cu on Cu(115) remains sta-
ble [11].

These experimental facts can all be qualitatively ex-
plained in terms of the following theoretical considera-
tions. Atoms diffusing on a vicinal surface experience a
potential energy barrier when approaching a downward
step. This barrier, commonly referred to as an Ehrlich-
Schwoebel barrier [12,13] or diffusion bias [1], may be
due to loss of coordination number by a diffusing atom
in the vicinity of the step or to long-range strain fields.
The Ehrlich-Schwoebel effect leads to preferential incor-
poration of diffusing atoms at upward steps or, in other
words, an uphill diffusion current. It is important to
recognize that this diffusion current is purely a nonequi-
librium effect. In the absence of deposition, the princi-
ple of detailed balance guarantees that there cannot be a
net current on a crystallographically stable facet. On the
other hand, during growth, the deposition process breaks
detailed balance and slope-dependent currents are gener-
ically present. One of the possible consequences of the
Ehrlich-Schwoebel effect is the destabilization of a sin-
gular surface during growth: islands form and because
atoms deposited on top of islands are inhibited from dif-
fusing over the edges, islands form on top of these islands
resulting in a three-dimensional structure.

From the discussion above, it is not yet clear how slope
selection can occur — the scenario described potentially
leads to structures that have slopes which increase in-
definitely. However, there are other processes that coun-
terbalance the Ehrlich-Schwoebel effect. For example,
knockout processes described in [14,15] and exchange ef-
fects [16] both can produce diffusion currents that flow
preferentially downhill. Thus it is understandable that a
combination of such effects, all of which are temperature
and material dependent, can lead to the selection of one
or more slopes at which the net current in the nonequi-
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librium situation vanishes. It is, of course, also possible
that a slope may be selected simply by the symmetry of
the growing crystal: if the surfaces bounding the three-
dimensional structure are singular surfaces then the dif-
fusion current must be zero, and the first such surface
encountered is stable.

The foregoing scenario was first proposed by Krug,
Plischke, and Siegert (KPS) [17] and further developed
by Siegert and Plischke [18] who, guided by the work of
Johnson et al. [10], proposed a Langevin equation that
led to the formation of pyramids with the selection of a
particular slope, and coarsening of pyramids according to
R(t) ~ t*/4. Similar results have been obtained by other
groups [19,7] using the same basic ideas. For complete-
ness, we review here these continuum models. We begin
with the conservation law that applies to MBE growth in
the situation where there is no evaporation of particles
as well as no voids or overhangs:

Oh(r,t)
ot

where h(r,t) is the height of the surface at time ¢t at sub-
strate location r, j(r,t) is the diffusion current, F is the
mean deposition rate, and 7n(r, t) is the Gaussian noncon-
servative noise function that describes the fluctuations in
the deposition rate. To incorporate the effects of diffu-
sion barriers and to guarantee the selection of a finite
slope in the long-time limit, one uses a diffusion current
which is a function of the local slope m(r,t) = Vh(r,t)
and has the general form

+V'j(r’t) =F+77(1‘,t)a (11)

j(m) = jy(m) + DeqgVAR(r,t) , (1.2)
where the second term on the right is the leading contri-
bution to the equilibrium current and the nonequilibrium
current j, has the form jy o = mafo(m), a = 1,2, with
functions f, that have the properties (i) fo(0) > 0 in or-
der to destabilize a singular surface and (ii) fo(mo) =0
for some finite myp, and, in the case of cubic symmetry,
fa(—m) = fo(m), fi(my,m3) = f2(mz,my) [20]. Simi-
lar conditions apply in the case of other lattice symme-
tries. Taking the gradient of both sides of Eq. (1.1) then
produces a Langevin equation for the two-component or-
der parameter m which resembles that used to describe
domain growth in a magnet with a conserved order pa-
rameter below its critical point [15]:

om(r,t)

= —DeqAAm + V[V - jp] + Vn(r,t).

(1.3)
In the one-dimensional case, where the order parameter
is a scalar, this analogy is exact since the right-hand side
may be written as the functional derivative of a “free
energy” with respect to m plus conservative noise. For
nonzero noise, it is known [21] that this equation pro-
duces domain growth with a characteristic time depen-
dence R(t) ~ t!/3. In two dimensions, three features
spoil the analogy: (i) it is no longer possible, in gen-
eral, to derive the diffusion current from a free energy
function, (ii) even if such a free energy exists, the or-
der parameter m = Vh and therefore V x m = 0, a

condition not normally applicable to the order parame-
ter of a magnet and, (iii) the interchange of divergence
and gradient in the second term on the right produces an
extra coupling between the two components of the order
parameter. In this list, conditions (ii) and (iii) are impor-
tant and conspire to produce a slower growth of domains
than in the magnetic case: instead of the well-known
Lif\'shitz-Slyozov—Wagner law R(t) ~ t'/3 for a magnetic
system with a finite number of equivalent ground states,
one finds R(t) ~ t™ where n < 0.25 [18,19,7].

Several authors have studied three-dimensional growth
using versions of this continuum formalism. Johnson
et al. [10] used a spherically symmetric function fi2 =
f(m?) that does not have a nontrivial zero and, there-
fore, no slope selection. Hunt et al. [19] used the one-
dimensional version of the same current and found coars-
ening with n ~ 0.22. Stroscio et al. [7] modified the
equilibrium current by discarding the leading contribu-
tion DeqVAhR(r,t) and retaining the next available lin-
ear term, containing five derivatives of h(r,t), in an at-
tempt to reduce the value of n. The integration of their
Langevin equation produced n = 0.18. At this stage, it
is fair to say that no fundamental understanding of the
quantitative difference between domain growth in mag-
nets and MBE exists. We also note that a very similar
Langevin equation describes the spinodal decomposition
of an unstable crystal facet [22,23] and growth exponents
in the same range have been found in this context [23].

In this article, we discuss a complementary approach to
the study of unstable three-dimensional growth, namely,
the investigation of microscopic models that contain both
the destabilizing Ehrlich-Schwoebel effect and a counter-
balancing downhill current that results in slope selection.
An atomistic model with Ehrlich-Schwoebel barriers has
been previously used to study the early stages of three-
dimensional growth by Smilauer et al. [24] but this model
may not display slope selection.

The remainder of this article is organized as follows.
In Sec. II we describe our model for three-dimensional
growth. Results for both “pyramids” and “mounds” are
discussed in Sec. III. We then discuss (Sec. IV) the
nontrivial issue of how one can distinguish experimen-
tally the situation of extreme kinetic roughening as de-
scribed, e.g., by the Mullins-Herring equation, from the
case of unstable three-dimensional growth. We also dis-
cuss various crossover phenomena that can complicate a
comparison of theory and experiment. We conclude, in
Sec. V, with a brief summary and an outlook for future
theoretical and experimental work.

II. THE MODEL

We consider a simple solid-on-solid model in which par-
ticles are deposited at a rate f = 7 ; on an initially flat
substrate in the form of a square lattice of adsorption
sites. Deposition is random and particles attach only to
the tops of existing columns, thus ensuring that there are
no voids or overhangs. Between deposition events, par-
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ticles that are not completely buried attempt to hop to
the top of a randomly selected nearest-neighbor column.
This diffusion process is controlled by a local energy func-
tion and the hopping probabilities obey detailed balance.
The energy of a particle at the top of the column at lo-
cation r is taken to be

E(r) = —E1n1(r) — Epna(r), (2.1)
where n;(r) is the number of lateral nearest neighbors of
the particle at r and ny(r) is the number of particles in
the neighboring columns that are either one step above or
below h(r). In order to implement diffusion bias, together
with the activated hopping that is commonly used to
model surface diffusion, we choose our hopping rates in
the following way:

W [h(r) = h(r) — 1, h(z') = A(x') + 1]
= Tjif exp [—— kEBlTnl (r)] Wi [n2(z') - na(r)] ,
(2.2)

where

W [n2(x') — na(r)]

_ { exp (—k—EEbT[ng(r) — nz(r’)]) , na(r) > na(r’)
1 y m2(r) < ma(r').
(2.3)

The second part, Wj, of the hopping rates incorpo-
rates the effects of the step-edge barriers into the dif-
fusion process: If an adatom approaches the step edge
from above, the number of next-nearest-neighbor bonds
is reduced and the move is suppressed by a factor
~ exp[—Fp/(kBT)]. The expression for W} is the stan-
dard Metropolis transition probability and reflects the
fact that the hopping rate from site r to r’ depends on
the energy barrier between the two states. This, in turn,
is given by the maximum of the potential energy of the
intermediate states. Thus the hopping rates must de-
pend on the direction of the move — something that is
missing in the simple form of the Arrhenius-type hop-
ping rate that forms the first part of Eq. (2.2) which de-
pends only on the bond configuration of the initial site.
Physically the form chosen for W} means that an adatom
that diffuses over the step-edge barrier from above passes
through an intermediate state directly at the top of the
step edge. The corresponding energy barrier to reach
that state is Fy. The adatom hops away from that state
with probability one. We note that a very similar diffu-
sion algorithm has already been used in Ref. [24].

In a Monte Carlo simulation the attempt frequencies
Taif and Tqep are not independent parameters: the ra-
tio Tdgep/Tait = (1 — f)/f corresponds to the ratio D/F
of the diffusion constant of adatoms to the deposition
flux in an experiment. Only this ratio enters into the
Monte Carlo simulation; the common prefactor of the
attempt frequency only sets the time scale. This prefac-
tor is furthermore modified by a factor exp[—Eo/(ksT)]:
The barrier Ey for the diffusion of an adatom on a flat

terrace again influences only the time scale and there-
fore has been omitted in the argument of the exponential
in (2.2). In the remainder of this article we will use the
number of deposited monolayers as a natural unit of time.

In some of our simulations, we have also introduced
anisotropy into the diffusion process. Such anisotropy
is known to be important on a number of semiconduc-
tor surfaces and is presumably responsible for the elon-
gated moundlike structures seen in GaAs [9,25]. In our
model, we have simply made the second-neighbor inter-
action strongly anisotropic: we have only added the con-
tribution proportional to E} for neighboring columns in
the +z directions. The diffusion process then still obeys
detailed balance but now provides some smoothening in
the y direction while inhibiting the approach to a down-
ward step from the z direction.

In order to stabilize the three-dimensional structures
at some finite slope we also introduce a slope-dependent
downhill current to counteract the effects of the diffusion
bias. While we could easily incorporate knockout pro-
cesses or exchange effects into the model, we have chosen
to simply generate downhill currents in the deposition
step. We allow a fraction p of the deposited particles to
immediately hop to a nearest-neighbor column of lower
height, if one exists. Without diffusion, this deposition
process is the two-dimensional version of a model first
investigated by Family [26], that is well known to be in
the universality class of the Edwards-Wilkinson (EW)
equation [27]:

Oh(r,t) _

o = v(p)AR(T, ) +n(x,),

(2.4)
where the coefficient v obviously increases as a function
of p. Comparing with Eq. (1.1) we see that this pro-
cess contributes a downhill current j = —v(p)m to the
diffusion current.

The model, as described above, contains a number of
parameters. We have adjusted these so as to obtain (i)
unstable growth for reasonably small substrate sizes L
and (ii) to obtain steady-state profiles that have slopes
small enough to be consistent with the SOS approxima-
tion. Point (i) refers to the fact that the Mullins-Herring
term AAm suppresses the instability for small enough
system sizes. In the linear approximation, Eqs. (1.1),
(1.2) take the form

%l—;lt—) = —vpAh(r,t) — DeqAAh(r,t) + 7(r,t)

and it is clear that this equation has a band of unstable
modes for wave vectors k < \/172 /Deq. Thus in a discrete
system of dimension L, there will be unstable growth only
if L > 274/Deq/v2. Since the dynamic exponent z ~ 4
in these models, it is only possible to simulate rather
small systems for the times required to reach the steady
state. For these reasons, we have chosen, if not noted
otherwise, f = 0.01, p = 0.1 or 0.25, E,/(kgT) = 1,
and E;/(kpT) = 5. These parameters are far from being
realistic for real materials but do allow us to exhibit the
effects of interest for substrate sizes as small as L = 64.

These are the basic ingredients of the model. The cal-
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culations of surface currents to be described at the be-
ginning of the next section have been performed on sub-
strates of size 64 x 64 with helical boundary conditions
to impose an overall tilt. All other simulations were per-
formed with periodic boundary conditions for L x L sub-
strates with I < 128. As we show in the next section,
this basic model leads to the formation of pyramids with
“facets” in the (11n) directions where n is determined
by the competition between the stabilizing and destabi-
lizing currents or, in the case of anisotropic diffusion, to
mounds with ridges aligned in the y direction. These
structures are, of course, not smooth as there is still the
ordinary kinetic roughening superimposed on the three-
dimensional steady-state shape.

III. RESULTS

We first discuss the case of pyramid formation. To
make the connection with the continuum theory [18,15]
we first use the method introduced by KPS [17] to mea-
sure the surface diffusion currents. Since the facets of
the evolving pyramids grown on a flat substrate turn
out to be oriented in (11n) directions (see below) we
measure the surface current on substrates tilted in these
directions. The results for several values of the knock-
out probability p and the deposition rate f are shown in
Fig. 1. For f = 0.01 and p = 0 [Fig. 1(a)] the surface
current has a zero at the rather large slope mo ~ 1.6
[me ~ (1.1,1.1)]. As expected, a nonzero knockout
probability pushes the zero to smaller values of m [see
Fig. 1(b) for p = 0.25]. A reduction of the deposition rate
f leads to a larger diffusion length I3 ~ [(1 — f)/f]X; the
exponent x depends on the actual mechanism of island
formation in the submonolayer regime and lies between
1/6 and 1/2 [28]. According to Ref. [18] a larger value
of I manifests itself in a shift of the maximum of the
j(m) curve to smaller values of m that is clearly seen in
Fig. 1(c). Interestingly the position of the zero in j(m) is
basically independent of the flux f. This agrees with the
idea [18] that the selected slope is determined by material
properties of the growing film.

The appearance of a zero in j(m) at a nonzero slope for
p = 0 is at first glance surprising since there is no explicit
mechanism for a downhill component of the diffusion cur-
rent. To see that special large-slope configurations can
contribute to a negative current, we consider the follow-
ing surface profile in one dimension: h(0) = A(1) = 0,
h(2) =2, h(3) = 3, h(4) = 4. The particle at the double
step at £ = 2 has ny(2) = 2, the same second-neighbor
coordination number that it will have if it hops to = = 1.
On the other hand, if it hops to £ = 3 it will have
n2(3) = 1. Therefore for this configuration W[h(2) —
L,h(l) — 1] = exp{Es/(ksT)}W[h(2) — 1,h(3) — 4]
and we have an example of a preferential downhill hop-
ping rate. Diffusion dynamics on slopes m = (m;,ms)
with m; > 1 are not described realistically in a SOS
model as overhangs would naturally occur. However, the
occurrence of slopes m = [m| > /2 with j(m) > 0 in the
model with p = 0 is not only a failure of the SOS condi-

tion, but, more seriously, also a failure of modeling sur-
face dynamics on a simple cubic lattice. If the diffusion
dynamics were modeled on more realistic lattice geome-
tries the much richer set of high symmetry orientations
would introduce additional zeros of the surface diffusion
current and therefore would effectively suppress the oc-
currence of overhangs. Keeping this in mind the micro-
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FIG. 1. Surface diffusion currents on substrates tilted in
the (11n) direction: (a) p = 0, f = 0.01, (b) p = 0.25,
f =0.01, and (c) p = 0.25 and f = 10™%. The other pa-
rameters are E;/(kpT) = 1 and Eg/(kgT) = 5. In (a) and
(b) the currents have been averaged over the first 20 deposited
monolayers and 1000 independent runs, whereas in (c) the av-
erage has been performed only over the first 20 monolayers
and 100 independent runs. The solid lines are drawn as a
guide to the eye (arbitrary dimensionless units).
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scopic dynamics of this model for large slopes should not
be regarded as a true description of the dynamics for a
real material, but as an effective model for additional
high symmetry surfaces that cannot be described cor-
rectly on a simple cubic lattice that is used for reasons
of computational efficiency only.

The foregoing argument shows that for the particu-
lar implementation that we have chosen for the Ehrlich-
Schwoebel barriers there are configurations that con-
tribute a downhill component to the diffusion current if
the slope becomes large enough, i.e., if there are at least
some steps of height 2. We are, of course, unable to cal-
culate the current j(m) from the microscopic dynamics
— there is no general method that reliably produces the
correct continuum version of a microscopic model [20,29].
However, the above example at least makes it plausible
that for large slopes j(m) may have a zero even for p = 0.

The theory of Siegert and Plischke [18] predicts that
film growth on singular surfaces under conditions typical
for MBE leads to the formation of pyramidlike structures.
The slopes of the sides of the pyramid are determined by
the zeros of the surface current. In principle we could
choose any of the parameter sets used in Fig. 1. How-
ever, from a simulational point of view a large value of
myo has several disadvantages: First, since mo determines
the selected tilt of the sides of the pyramids, a value of
mg > 1 is not consistent with the solid-on-solid condition
of our model because overhangs are expected to become
important at these angles. Second, it takes a fairly long
time until that selected slope is built up. This leads to an
extensive crossover regime until the asymptotic regime is
reached, where the slopes are basically constant and the
surface evolution proceeds through a coarsening process.
Similarly, small values of the flux f require an enormous
amount of computer time so that it is hard to reach the
asymptotic regime as well. For these reasons most of our
simulations of pyramid formation have been done with
the parameter set used in Fig. 1(b). We emphasize that
this choice is dictated by the need of computational ef-
ficiency, not by physical reasons. For example, a flux
f = 0.01 is unrealistically large and consequently the
surface morphology obtained in these simulations can-
not be compared with morphologies seen in real experi-
ments. A much better agreement is obtained for a flux
f = 10—, In Fig. 2 we show typical surface morphologies
for film thicknesses of 140 and 2000 deposited monolayers
that are quite similar to the morphologies seen in exper-
iments [7,8]. As already mentioned above, the sides of
the pyramids are oriented in the (11n) directions. The
simplest form of a diffusion current (1.2) that would gen-
erate such morphologies uses functions f;(m) = f(m,)
and f(m) = f(mz) with f(mo) = 0. In this case the
selected slopes are simply (+mo,+myo). In Fig. 2(c) we
also show a cut through the film that illustrates the slope
selection during the growth process. If the average slope
|m] is estimated from the straight parts in Fig. 2(c) one
obtains a value in the range of 0.55-0.66 that agrees well
with the zero of the surface current in Fig. 1(c) [30].

We use the local slope m of the surface as an order-
parameter to characterize to the surface morphology. To
be specific we use the first zero R;(t) of the order param-
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FIG. 2. Contour plots of surface morphologies for (a) 140
and (b) 2000 deposited monolayers; f = 107% p = 0.25,
E./(kgT) =1, Ey/(kgT) = 5. In (c) a cut through the film
along the line indicated in (b) is shown that emphasizes the
slope selection in the profile. The selected slope corresponds
to the zero in Fig. 1(c).
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eter correlation function

C(r,t) = (m(r,t)m(0,t)) (3.1)
to describe the coarsening process of the pyramid forma-
tion quantitatively. The angular brackets in (3.1) indi-
cate averaging over choice of origin as well as over differ-
ent Monte Carlo runs. In Fig. 3 we show our results for
two different deposition rates, f = 0.01 and f = 1074,
Time is measured in numbers of deposited monolayers.
For f = 0.01 we obtain an almost perfect power law,
R, (t) ~ t%28 over almost five decades in very good agree-
ment with the continuum theory [18]. For f = 10~* the
behavior is more complex. The diffusion length I; deter-
mines the average distance between nucleation sites in
the submonolayer growth regime. Since this is the same
as the average island size before the coalescence of islands
sets in, /g also sets the initial size, respectively, base, of
the pyramids. In other words, at least initially the size of
the pyramids is proportional to /4 and therefore decreases
with f. This is clearly seen in Fig. 3. It follows that ini-
tially the tilt of the pyramids for small f is much smaller
than the selected slope m that corresponds to the zeros
of the surface current j. Thus there will be a crossover
regime where the slope of the pyramids increases until it
reaches its asymptotic value mgo. These crossover effects
will be discussed further in Sec. IV. However, this sim-
ple argument already shows that the value of n = 0.26
obtained for f = 0.01 is much closer to the asymptotic
value than the effective exponents that can be extracted
from Fig. 3 for f = 1074,

Also included in Fig. 3 are results for the square of the
local slope (m?(t)) = C(0,t). Since the slope behaves

100 1 t
| o0
= 10 o
o ]
leo % © L=128, {=0.01
] o L=64, =0.01
1o © L=32, {=0.01
©  L=128, f=10"
1 ™ MR | Ty AR | T LR

100 10’ 102 103 10*
t

FIG. 3. First zero R:(t) of the slope-slope correlation func-
tion C(r,t) (3.1) for two different deposition rates. The
straight lines correspond to power-law fits with the indicated
exponents. The inset shows the square of the order parameter
(m?(t)) = C(0,t) for the same parameter sets.

like an order parameter in a magnetic system with con-
served dynamics [18,15] this quantity should converge to
a constant. This is the basic mechanism for the slope se-
lection. For f = 0.01 (m?(t)) becomes basically constant
within the first few monolayers, whereas for f = 10~*
the convergence is obtained only after the deposition of
more than 200 monolayers. Unfortunately, (m?(t)) is not
a measure for the selected slope: The selected slope mg
is obtained in the limit lim,_,o C(r,t) = (m(¢))? that is
always smaller than C(0,t) because of fluctuations. This
explains the discrepancy between the asymptotic value
obtained for (m?(¢)) from Fig. 3 and the slopes seen in
Fig. 2(c), respectively, the value mo measured in Fig. 1.
This is also apparent from the fact that the asymptotic
value of (m?(t)) for f = 107* is smaller than the value
obtained for f = 1072. Clearly, the fluctuations have
to be smaller for smaller deposition rates, whereas, as
mentioned above, the location of the zero in the surface
current is basically independent of f.

We now turn to the case of anisotropic diffusion where
the second-neighbor interaction acts only in the z direc-
tion. In Fig. 4 we show a single configuration grown
for 0.1 x 2% monolayers on a 64 x 64 substrate for
p = 0.1. This picture clearly shows a three-dimensional
structure predominantly characterized by the wave vec-
tor k = 27(1,0) and an average slope m =~ (2/3,0). In
Fig. 5 we show the steady-state structure factor S(k) =
(h(k)h(—k)), where h(k) is the Fourier transform of the
height function h(z,y), averaged over ten samples and
plotted for k = (k;,0) and (0, k,). The structure factor
5(0, ky) seems to display conventional kinetic roughening
in this stable direction. For small k, a reasonable fit to
a power law is obtained, S(0,ky) ~ ky ¥ with 7, =~ 2.5.
At this point we have no theory that predicts this expo-
nent. In the unstable z direction, the structure factor
is best described as a smooth function of k, for large
k, on which is superimposed the power spectrum of the
selected shape. This shows up primarily in the small-
est three values of k,. In this range of k., the structure
factor S(k;,0) increases by more than three orders of

20
10!

KRR AAL R

'.\\"
LRI \Q
0'«'5’3.‘.,*5;‘:!\5.0,.0
XS

4
2%
'\.‘l " ‘.’" \\\\!

16

64

FIG. 4. Snapshot of the surface h(z,y,t) as a function of
substrate position (z,y) of a film grown on a 64 x 64 substrate
for a time ¢ = 0.1 x 2'° deposited monolayers with anisotropic
Schwoebel barriers.
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FIG. 5. Steady-state structure factor for L = 64 for the
case of anisotropic diffusion. The straight line is a fit to the
functional form S(0,k,) = Ak, " and yields v, ~ 2.5. The
function S(k=,0) does not show power-law behavior: to see
this one would have to subtract the steady-state profile from
the height h(z,y,t) [2].

magnitude.

We next discuss the behavior of the order parameter
and the coarsening of the mounds. We characterize the
unstable growth process using the equal-time correlation
functions

Caa(-'”’ y) = <ma(x,y, t)ma(O,O,t»a (3'2)

with a = z,y. In Fig. 6 we show the correlation functions
Cze(z,0) and C,»(0,y) for L = 128 and t = 0.1 x 217
monolayers averaged over 15 samples. At this time, the
size of the mounds in the transverse y direction has
reached the size of the system as indicated by the fact
that C,.(0,y) does not cross zero. The fact that this
function reaches a finite asymptotic value at y = L/2
also shows that the mounds are well oriented along the
y direction. The function C,.(z,0), on the other hand,
has well-defined oscillations and the locations of the ze-
ros R;(t) of this function provide convenient measures
of the width of the mounds. From the graph we see

. —— C,(x,0
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FIG. 6. Correlation functions Czz(z,0,t) and C.(0,y,t)
for L = 128 and t = 0.1 x 27 monolayers.

that even at the late time used, there are still at least
two mounds present — for a single mound, as shown in
Fig. 4 for L = 64, the first zero R; of C,.(x,0) appears
at R1 = L/ 4.

One can use any of the zeros of Cp,(z,t) to study the
growth of the mounds as a function of time. It turns
out that the second zero R;(t) provides the most stable
estimate. The reason is that there is a large discontinu-
ity in Cpx(z,t) between z = 0 and £ = 1 — the square
of the nearest-neighbor step height C..(0,t) is consider-
ably larger than the extrapolated value lim,_,o Cex(z, ).
Moreover, at intermediate times, when the mounds are
already well established, the short-range correlation func-
tion can be negative for z < 3 even though there is a
finite average slope. These effects tend to make the de-
termination of R;(t) less reliable than that of Ry(t). In
Fig. 7 we show the time dependence of Ry(t) for L = 64
and L = 128. The data are reasonably well fitted with a
power law R(t) ~ t"™ with n = 0.18 over three decades in
time for L = 128 and over a shorter interval for L = 64.
The behavior of the other characteristic lengths R;(t)
and R3(t) is entirely consistent with this result. We have
also examined the growth of the mounds in the y direc-
tion. This overlaps the coarsening process: The char-
acteristic length of the mounds becomes significant long
before they begin to coarsen and becomes equal to the
substrate size for L = 128 at ¢ < 10°.

Although the fit of Ry(t) to a power law, as shown
in Fig. 7, is quite good, there are indications that the
actual functional form may be more complicated. This
is illustrated in Fig. 8 where we plot the square of the
width as a function of time for L = 64 and L = 128.
Although the form WZ(t) = 0.22t%52 provides a rea-
sonable fit to the data over the same time interval in
which coarsening occurs, one can see significant devia-
tions from a pure power law. Moreover, one might also
expect that W2 ~ 28 ~ R2C,.(0,t). If one fits C,.(0,1)
(also shown in Fig. 7) to a power law one obtains a very

FIG. 7. Evolution of the characteristic size of the mounds
in the case of anisotropic Schwoebel barriers for L = 64 and
L = 128. The straight line is a fit to the form Rx(t) = At™
and yields n =~ 0.18.



314 MARTIN SIEGERT AND MICHAEL PLISCHKE 53

©  WAt), L=128
100 3 o w2, L-64
a C,_(0t),L=128
S 10
OX
E 4
; Aé@@&é.&é
A O
o]
01 T T T i T T
107 10° 10" 102 10 10¢

t

FIG. 8. Plot of the square of the width of the interface as
a function of time for anisotropic diffusion and L = 64 and
L = 128. The straight line is a fit to the form W2(t) = Bt*?
and yields 8 ~ 0.26 over the same time interval in which
the mounds coarsen. Also shown is the mean square near-
est-neighbor step height in the = direction C..(0,0,1t).

small exponent C,,(0,t) ~ t%% and therefore an esti-
mate 20 =~ 0.42 which is well outside the uncertainty in
the direct estimate of the exponent 3. Similar deviations
from pure power-law behavior are also seen in integra-
tions of Langevin equations of the type (1.3) [15] and
this remains to be understood.

IV. CROSSOVER BEHAVIOR AND
COMPARISON WITH EXPERIMENT

The result that the pyramid size grows ~ t1/4 may,
depending on parameters such as temperature, flux, etc.,
be seen only after the deposition of many monolayers.
The growth behavior for earlier times can be influenced
by crossover effects that make the comparison of the-
ory with experiment more complicated. Quite generally,
we observe that crossover effects always lead to effective
growth exponents n < 1/4. This is the case for numeri-
cal solutions of Langevin equations of type (1.3) as well
as for the Monte Carlo simulations. The only exceptions
from this rule appear during the deposition of the first
few monolayers as seen in Fig. 3 for f = 1074

First, we discuss crossover effects in the context of the
Langevin equation (1.1) with a surface current

Jba = Dpma(l —um?), a=1,2. (4.1)
Since all constants Deq, Dy, u can be scaled out of the
problem [31,15] the extent of the crossover regime of the
equation of motion [32]

%z—AAh—V-jb+\/En

- (4.2)

depends only on the single remaining parameter, the
noise strength € ~ Fu/D.q. In Fig. 1 we saw that small
deposition rates, i.e., small noise strength in the frame-
work of Langevin equations, have a second effect: they

lead to a shift of the maximum of the j(m) curve to
smaller tilts. This cannot be modeled with the current
(4.1). Instead one can use the current

Mme(l —m2)
1-m2)%+ (lama)? ’

a=1,2 (4.3)

jb,a = (

that was proposed in Ref. [18]. The additional parameter,
the diffusion length /4, fixes the position of the maximum
at ~ 1/l4. In Fig. 9 results for the first zero R;(t) of
the height-height correlation function from a numerical
integration [33] of Eq. (4.2) are shown for the current
(4.1) with e = 0 and € = 1, and for the current (4.3) with
€ = 0 and I; = 10. For noise strength ¢ = 1 we obtain
a power-law increase ~ t™ with n ~ 0.23 that is within
the error bars of n = 1/4. For the same form (4.1) of
the current, but ¢ = 0, the exponent n ~ 0.21 is only
slightly smaller. The largest deviation n ~ 0.20 from
n = 1/4 is obtained for the current (4.3) with [ = 10.
The importance of larger values of the diffusion length I
is also seen in the behavior of the order parameter (m?)
shown in the inset of Fig. 9: Whereas for the current
(4.1) (m?) does not change very much after a short initial
period, there is a substantial variation in the average
slope over four decades in time for [; = 10. We believe
that effective values n < 1/4 are in most cases related to
situations where the average slope has not yet saturated.

In the framework of Monte Carlo simulations the
crossover behavior can be characterized quite similarly.
As already mentioned in Sec. III, almost no crossover
is seen for high deposition rates corresponding to large
noise strengths ¢ (see Fig. 3, f = 0.01). For f = 10~*
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FIG. 9. First zero R;(t) of the slope-slope correlation func-
tion C(r,t) obtained from a numerical integration of Eq. (4.2);
the squares (circles) correspond to the current (4.1) for noise
strengths € = 0 (¢ = 1), the diamonds correspond to the cur-
rent (4.3) with ¢ = 0 and lg = 10. The straight lines are
power-law fits R;(t) ~ t". The exponent n is listed in the
legend. The inset shows the behavior of the averaged square
of the slope (m?(t)) for the same parameters.
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there is a large regime, ¢t ~ 10 — 600 monolayers, that is
characterized by a much slower growth, Beg =~ 0.17. In
the same regime the average slope still increases as seen
from the behavior of (mZ?(t)). Only after the deposition
of more than 600 monolayers does the growth seem to
cross over to the asymptotic regime with Ry(t) ~ t'/4.
Effective exponents around 0.17 have also been observed
in the growth of Fe on Fe(001) [7]. In that case the slower
growth has been attributed to the absence of thermal ex-
citations and consequently to the absence of the Mullins
term DeqAAh in the corresponding equation of motion.
In our Monte Carlo simulations with E;/(kgT) = 1 such
thermal excitations are certainly present and therefore
the slower growth must have a different origin. In the
discussion of the Langevin equation (4.2) we also saw
that smaller growth exponents can be obtained even if
the Mullins term is present.

We have seen that unstable growth leading to pyramid
formation can be most easily characterized by means of
surface currents that generically have the form shown in
Fig. 1. Since surface currents as a function of the tilt can
hardly be measured in an experiment, other quantities
must be studied to classify the growth behavior. Whereas
kinetic roughening is characterized by two exponents, the
roughness exponent ¢ and the dynamical exponent z, the
growth exponent 8 = 1/z is the only exponent present in
the case of pyramid formation (( = 1). Thus for { <1 a
measurement of the roughness exponent may be sufficient
to distinguish between the two scenarios. If ( = 1, the
comparison is more complicated as the scaling form of,
e.g., the height-height correlation function

G(r,t) = ([h(r,t) — h(0,1)]*) ~ r*f(r/R(t))

is identical in the two cases. In the case of kinetic rough-
ening this behavior follows from the standard scaling as-
sumption [34] and the characteristic length R(t) ~ t'/= is
the correlation length £(t), whereas in the case of pyra-
mid formation the scaling form (4.4) is obtained from the
scaling behavior of the slope-slope correlation function

(4.4)

C(r,t) = c(r/R(t)) (4.5)

that behaves like the order-parameter correlation func-
tion in systems that phase order as in spinodal decom-
position or Ostwald ripening. In this case the typical
length scale corresponds to the pyramid size. Surfaces
that can be described within the theory of kinetic rough-
ening are scale invariant on scales smaller than the cor-
relation length, whereas this is not necessarily true in
the case of pyramid formation. However, this difference
is difficult to quantify, in particular, as even in the de-
terministic process of pyramid formation, kinetic rough-
ness is superimposed on the growing structures. We will
show that the two different scenarios can be most eas-
ily distinguished by looking at the form of the correla-
tion functions. To be specific we compared our results
for pyramidal growth obtained from Langevin equations
(1.1) and Monte Carlo simulations with the results for
kinetic roughening following from the linear equation

Oh

= h+1n.
50 = “AAAR+7

(4.6)

Note, however, that there is no theoretical justification,
nor do we intend to imply that Eq. (4.6) describes kinetic
roughening in materials correctly. To describe a realistic
situation, several nonlinear terms have to be added to the
right-hand side of Eq. (4.6) that would change the growth
exponents [29]. In particular, there is no reasonable the-
ory of kinetic roughening that predicts a roughness ex-
ponent ( = 1 for two-dimensional surfaces as Eq. (4.6)
does. In fact, we believe that all experiments in which
roughness exponents in the range ( ~ 0.7 —1.0 have been
measured can be explained in terms of pyramid forma-
tion. This is elucidated in Fig. 10, where the height-
height correlation function obtained from Eq. (4.2) with
jb from (4.1) and € = 1 is plotted. If these results were
interpreted within the theory of kinetic roughening, one
would extract an effective roughness exponent ( ~ 0.8
from the small distance behavior. The results for larger

film thicknesses also show that this effective value for

¢ slowly increases. Clearly, the asymptotic result must
be ¢ = 1 for the equations describing pyramid formation.
Therefore measurements for the growth of Ag on Ag(111)
[35], in which exponents ¢ = 0.8 and 8 = 0.25 have been
obtained, are in almost perfect agreement with the theory
of pyramid formation although the results were originally
interpreted within the framework of kinetic roughening.
These deviations from the r? behavior for small r are
quite generic and can be traced back to the nonzero noise
strength; similar deviations are also found in the results
of our Monte Carlo simulations. In our numerical inte-
grations of the Langevin equation (4.2) for € = 0 we find
basically no deviations from the 72 behavior for either
current (4.1) or (4.3). As an aside, we mention that the
exponent 8 = (/z should not be used to describe pyra-
midal growth although one may argue that effectively we
have ¢ = 1 for pyramid formation and therefore the expo-
nent 3 is formally identical with n = 1/z. However, the
underlying physical mechanism is totally different, and,
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FIG. 10. Height-height correlation function G(r,t) ob-
tained from a numerical integration of Eq. (4.2) with j, from
Eq. (4.1) and € = 1 (dotted lines). The straight line corre-
sponds to a power-law fit G ~ r2¢ with ¢ = 0.83. For later
times (upper curves) this effective value of ¢ increases.
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as already mentioned, kinetic roughness is usually super-
imposed on the pyramids. If the exponent (3 is defined to
characterize the increase of the surface width and the ex-
ponent n to describe the growth of the pyramid size that
corresponds to the wavelength of the oscillations of the
height-height or slope-slope correlation functions then, as
explained at the end of the preceding section, the expo-
nent § must be always larger than n.

As explained in the preceding paragraph, we use the
linear equation (4.6) only to clarify the differences be-
tween kinetic roughening and pyramid formation. For
this purpose Eq. (4.6) is particularly simple as all correla-
tion functions can be calculated analytically. Usually the
height-height correlation function is evaluated by fitting
a power law to the data for distances smaller than the
correlation length € as has been done in Fig. 10. On the
other hand, the differences between pyramid formation
and kinetic roughening become most apparent on length
scales larger than the correlation length: In the case of
pyramid formation the height-height correlation function
has an oscillatory behavior and the wavelength of the os-
cillations is determined by the pyramid size. As well, the
correlation functions become anisotropic: If the correla-
tion function is measured in the (110) directions we ex-
pect for quadratic pyramids a wavelength that is larger
by a factor of v/2 in comparison with the wavelength
measured in the (100) directions. In the case of kinetic
roughening the correlation functions are roughly constant
on scales larger than €. The oscillatory behavior becomes
more apparent when the height-height correlation func-
tion is plotted on a linear scale, not, as it is usually done,
on a log-log scale that suppresses the oscillations. These
differences can be seen even more clearly by studying the
slope-slope correlation functions. In Fig. 11 we compare
the results for Eq. (4.6) with the Monte Carlo results
described in this article. Whereas for early times it is
hard to notice a difference between the two cases, the os-
cillatory behavior of the slope-slope correlation function
in the case of pyramid formation [Fig. 11(b)] becomes
apparent for larger film thicknesses.

In Fig. 11(b) we also indicate the limiting behavior
of the correlation function for r — 0: For r > 1/2a,
a being the lattice constant, the plotted lines coincide
with the actual values of the measured correlation func-
tion. For r < v/2a the values of the correlation functions
are indicated by symbols, whereas the lines are extrapo-
lated to zero by fitting the correlation function to a cosine
times an exponential function [36]. The extrapolated val-
ues lim;_,o C(r,t) = (m(t))? are roughly a factor of 24
smaller than the measured value of C(0,t) = (m2(¢t)).
For 1370 deposited monolayers (ML) the average slope
is almost saturated, and we obtain from the extrapo-
lated values an estimate (m(t)) ~ 0.53 that is in excel-
lent agreement with the zero of the surface current [see
Fig. 1(c)]. Since the form of the correlation function is ex-
pected to be universal, an estimate of the average slope
(m(t)) can in principle also be obtained from the first
minimum of the correlation function that is quite easy to
measure. For our Monte Carlo simulations with f = 1074
we find for late times a ratio (m(¢))?/[—Cmin(t)] = 2.1.
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FIG. 11. Comparison of the slope-slope correlation func-
tions for (a) kinetic roughening with ( = 1 and (b) pyra-
mid formation, f = 107%. For small times (solid lines) the
differences in the form of the correlation function are small,
whereas for larger film thicknesses (dotted and dashed-dotted
lines) the oscillatory behavior in the case of pyramid growth
becomes apparent. In (b) the difference between C(0,t) (sym-
bols) and lime— o C(r,t) (lines) is also indicated (see text).

For the numerical integrations of the Langevin equation
(4.2) with € = 0 we find a ratio of roughly 1.6. However,
we also find that ratio increases with the noise strength
so that this way of estimating the average slope seems to
be less practical.

Theory predicts that the selected slopes of the evolving
pyramids are given by the zeros of the surface current.
These surface orientations correspond to the stable solu-
tions of the equation of motion (1.1). This means that
if Eq. (1.1) is linearized around these zeros the Edwards-
Wilkinson equation is obtained. This point has been ver-
ified by Ernst and co-workers. In their first experiment
Cu was deposited on Cu(001) [5] and for T = 220 K
pyramids with side planes corresponding to {115} orien-
tations were observed. In a later experiment [11] Cu was
deposited on Cu(115) at the same temperature and no in-
stability was observed in agreement with the theoretical
ideas.

V. CONCLUSIONS

In this article we have shown that the Ehrlich-Schwoe-
bel effect combined with nonconservative noise generi-
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cally leads to the formation of three-dimensional struc-
tures that progressively coarsen as a function of time and
saturate at a stable, substrate-size-independent form.
Previous simulations of a related model [24] have shown
the destabilizing of a singular surface but our models
are the first [37] to display the slope selection predicted
on the basis of general arguments [17,18]. For the case
of isotropic diffusion and symmetric Ehrlich-Schwoebel
barriers, the steady-state morphologies are pyramids as
are found experimentally in the case of homoepitaxy on
Cu(001). We have also shown that for substrates which
give rise to anisotropic diffusion, the steady-state shapes
are elongated “mounds,” reminiscent of those seen in ex-
periments on GaAs [9,4], rather than the symmetric pyra-
mids mentioned above.

We have also studied the coarsening of the mounds
and pyramids and found that the characteristic length
scale grows as a function of deposition time according
to R(t) ~ t™ with n =~ 0.25 in the case of pyramids
and n =~ 0.18 for mounds. In the case of mounds, the
crossover effects are considerably larger than in the case
of pyramids and it is by no means clear that the differ-
ence between the two exponents will survive when larger
systems are studied.

We have also discussed in some detail the interpreta-
tion of experimental data. Because the exponent ¢, which
characterizes the growth of the height-height correlation
function at short distances, is equal to one in the case
of pyramid growth and is also equal to one in the linear
Mullins-Herring equation, which is often taken to be a
starting point for theories of MBE, some care must be
taken in the analysis of data for very rough interfaces

(¢ = 1). We have shown that one way to distinguish
unambiguously between kinetically very rough interfaces
and unstable three-dimensional growth is to examine the
shape of the height-height or slope-slope correlation func-
tion. For the case of kinetic roughening, these functions
saturate as a function of separation whereas they oscil-
late in the case of pyramid formation. We note that these
correlation functions should be accessible through scan-
ning tunneling microscopy.

Finally, we mention that a major unresolved ques-
tion remains, namely, the relation of unstable growth as
described here to the coarsening found in phase order-
ing. The characteristic exponent n < 0.25 is significantly
smaller than the n = 1/3 of the Lifshitz-Slyozov-Wagner
coarsening although the Langevin equations describing
these two processes are quite similar, although not iden-
tical. The elucidation of this difference as well as the
development of models that incorporate proper parame-
ters for specific materials should form a fruitful area of
research for some time to come.

ACKNOWLEDGMENTS

We thank Joachim Krug, Pavel Smilauer, Dietrich
Wolf, and Andy Zangwill for helpful discussions and/or
correspondence. This research was supported by the
Deutsche Forschungsgemeinschaft under Grant No. SFB
166 and by the NSERC of Canada.

(1] J. Villain, J. Phys. (France) I 1, 19 (1991).

[2] M. Siegert and M. Plischke, Phys. Rev. Lett. 68, 2035
(1992). We note that the microscopic model used in this
reference is not very realistic in describing the evolution
of large slopes. However, the potential energy affecting
an adatom on a vicinal surface in this model is very sim-
ilar to that that is usually used to model diffusion on
a vicinal surface with Ehrlich-Schwoebel barriers. Thus
the onset of the instability is described correctly. In fact,
the measured surface diffusion current [17] has the same
form that was later proposed in Ref. [10].

[3] G. W. Smith, A. J. Pidduck, C. R. Whitehouse, J. L.
Glasper, and J. Spoward, J. Cryst. Growth 127, 966
(1993).

[4] C. Orme, M. D. Johnson, K. T. Leung, and B. G. Orr,
in Compound Semiconductor Epitaxy, edited by C. W.
Tu, L. A. Kolodziejski, and V. R. McCrary, MRS Sym-
posia Proceedings No. 340 (Materals Research Society,
Pittsburgh, 1994), p. 233.

[5] H.-J. Ernst, F. Fabre, R. Folkerts, and J. Lapujoulade,
Phys. Rev. Lett. 72, 112 (1994).

[6] J. E. Van Nostrand, S. J. Chey, M.-A. Hasan, D. G.
Cahill, and J. E. Greene, Phys. Rev. Lett. 74, 1127
(1995).

[7] J. A. Stroscio, D. T. Pierce, M. Stiles, A. Zangwill, and
L. M. Sander (unpublished).

[8] K. Thiirmer, R. Koch, M. Weber, and K. H. Rieder,
Phys. Rev. Lett. 75, 1767 (1995).

[9] C. Orme, M. D. Johnson, J. L. Sudijono, K. T. Leung,
and B. G. Orr, Appl. Phys. Lett. 64, 860 (1994).

[10] M. D. Johnson, C. Orme, A. W. Hunt, D. Graff, J. Sudi-
jono, L. M. Sander, and B. G. Orr, Phys. Rev. Lett. 72,
116 (1994).

[11] H.-J. Ernst (private communication).

[12] G. Ehrlich and F. G. Hudda, J. Chem. Phys. 44, 1039
(1966); S. C. Wang and G. Ehrlich, Phys. Rev. Lett. 70,
41 (1993).

(13] R. L. Schwoebel and E. J. Shipsey, J. Appl. Phys. 37,
3682 (1966); R.L. Schwoebel, J. Appl. Phys. 40, 614
(1969).

[14] D. D. Vvedensky, A. Zangwill, C. N. Luse, and M. R.
Wilby, Phys. Rev. E 48, 852 (1993).

[15] M. Siegert, in Scale Invariance, Interfaces, and Non-
Equilibrium Dynamics, Vol. 344 of NATO Advanced
Study Institite, Series B: Physics, edited by A. J. Mc-
Kane, M. Droz, J. Vannimenus, and D. Wolf (Plenum,
New York, 1995), pp. 165-202.

[16] G. L. Kellogg and P. J. Feibelman, Phys. Rev. Lett. 64,
3143 (1990); G. L. Kellogg, ibid. 70, 1631 (1993).

[17] J. Krug, M. Plischke, and M. Siegert, Phys. Rev. Lett.
70, 3271 (1993).

[18] M. Siegert and M. Plischke, Phys. Rev. Lett. 73, 1517



318 MARTIN SIEGERT AND MICHAEL PLISCHKE 53

(1994).

[19] A. W. Hunt, C. Orme, D. R. M. Williams, B. G. Orr,
and L. M. Sander, in Scale Invariance, Interfaces, and
Non-Equilibrium Dynamics, Vol. 344 of NATO Advanced
Study Institite, Series B: Physics [15], pp. 249-259.

[20] M. Siegert, Habilitationsschrift, Gerhard-Mercator-Uni-
versitat Duisburg, 1995.

[21] T. Kawakatsu and T. Munakata, Prog. Theor. Phys. 74,
11 (1985).

[22] J. Stewart and N. Goldenfeld, Phys. Rev. A 46, 6505
(1992).

[23] F. Liu and H. Metiu, Phys. Rev. B 48, 5808 (1993).

[24] P. Smilauer, M. R. Wilby, and D. D. Vvedensky, Phys.
Rev. B 47, 4119 (1993).

[25] C. Orme, M. D. Johnson, K.-T. Leung, B. G. Orr, P.
Smilauer, and D. Vvedensky, J. Cryst. Growth 150, 128
(1995).

[26] F. Family, J. Phys. A 19, L441 (1986).

[27] S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. Lon-
dom, Ser. A 381, 17 (1982).

[28] S. Stoyanov and D. Kashiev, in Current Topics in Mate-
rials Science, edited by E. Kaldis (North-Holland, Am-
sterdam, 1981), Vol. 7, pp. 69-141; J. A. Venables, G.
D. Spiller, and M. Hanbiicken, Rep. Prog. Phys. 47, 399
(1984); J. A. Blackman and A. Wilding, Europhys. Lett.
16, 115 (1991); J. Villain, A. Pimpinelli, L.-H. Tang, and
D. E. Wolf, J. Phys. (France) I 2, 2107 (1992); M. Bartelt
and J. W. Evans, Phys. Rev. B 46, 12675 (1992); Surf.
Sci. 298, 421 (1993); J. A. Stroscio and D. T. Pierce,
Phys. Rev. B 49, 8522 (1994); C. Ratsch, A. Zangwill,
P. Smilauer, and D. D. Vvedensky, Phys. Rev. Lett. 72,
3194 (1994); C. Ratsch, P. Smilauer, A. Zangwill, and
D. D. Vvedensky, Surf. Sci. Lett. 329, L599 (1995); M.
Schroeder and D. E. Wolf, Phys. Rev. Lett. 74, 2062
(1995).

[29] M. Siegert and M. Plischke, Phys. Rev. E 50, 917 (1994).

[30] It is not completely clear that the value of mo measured
in Fig. 1(c) has to coincide with the selected slope in

Fig. 2(c): The currents plotted in Fig. 1(c) were obtained
from early-time measurements (20 deposited monolay-
ers). For a direct comparison with Fig. 2(c) it would be
necessary to calculate the steady-state currents. However,
this is not feasible for several reasons: In the unstable
regime, 0 < m < 1/l4, steady-state currents can only be
measured on very small substrates because otherwise a
state with a constant slope in that range is unstable. For
larger slopes such a measurement is possible in principle
[17], but requires an enormous amount of computer time.
For these reasons the agreement of the results obtained
from Fig. 1(c) and Fig. 2(c) is indeed satisfactory.

[31] M. Grant, M. San Miguel, J. Vinals, and J. D. Gunton,
Phys. Rev. B 31, 3027 (1985).

[32] The height h in Eq. (4.2) is measured in a comoving frame
of reference so that the flux does not appear explicitly.

[33] For a description of the numerical method see Ref. [15].

[34] F. Family and T. Vicsek, J. Phys. A 18, L75 (1985).

[35] G. Palazantzas and J. Krim, Phys. Rev. Lett. 73, 3564
(1994).

[36] In the case of a magnetic system with conserved order pa-
rameter the limiting behavior of the order-parameter cor-
relation function, C(z) ~ 1 — {ﬁ]l/zz +- -, is known
as Porod’s law [G. Porod, Kolloid Z. 124, 83 (1951);
125, 51 (1952)]. In the case of pyramid formation it is
not known whether Porod’s law holds. In particular, it
is unknown whether C(r) depends linearly or quadrati-
cally on r for small r. In fact, our results obtained from
the integration of the Langevin equation (4.2) indicate
that Porod’s law does not hold, i.e., C(r,t) seems to be
a quadratic function of r for small . In order to extract
the limit lim,o C(r) = (m)? we have allowed for lin-
ear terms in the correlation function, however, the result
does not seem to depend very much on this detail.

[37] P. Smilauer and D. D. Vvedensky [HLRZ Jiilich report,
1995 (unpublished)] investigate a similar model with em-
phasis on the early-time regime.



1287
961 |
641

32| %

1287,
96{
641

32
b)

30

20

10

0 50 100 150

FIG. 2. Contour plots of surface morphologies for (a) 140
and (b) 2000 deposited monolayers; f = 107 p = 0.25,
E./(ksT) =1, Ey/(ksT) = 5. In (c) a cut through the film
along the line indicated in (b) is shown that emphasizes the
slope selection in the profile. The selected slope corresponds
to the zero in Fig. 1(c).



